Dyncep Logo
[ .02 ]
Desktop

Desktop

desktop applications for linux, windows & mac - full native performance or cross-platform compatibility

Chevron Left Chevron Right

Rust

#![cfg_attr(not(debug_assertions),
windows_subsystem = "windows")]

fn main(){
  logistics_streamliner_desktop_lib::run()
}
Web-Frontend

Web-Frontend

tailored web apps accessible across all devices

Chevron Left Chevron Right

Typescript

export default function App() {
   return(
       <BrowserRouter> 
          <ApplicationRoutes />
       </BrowserRouter>
   );
}
Backend, Server-side

Backend, Server-side

apis, microservices, databases, real-time communication - scalable, performant, reliable, secure and fast backend solutions

Chevron Left Chevron Right

Go

func main() {
    r := chi.NewRouter()
    r.Get("/health", healthCheckHandler)
    r.Get("/shipments/{id}", shipmentHandler)
    /* ... */
    http.ListenAndServe(":8080", r)
}
Cloud, DevOps & IAC

Cloud, DevOps & IAC

cloud engineering, devops workflows, infrastructure as code - efficient development, deployment, scaling, monitoring and 24/7 uptime

Chevron Left Chevron Right

Terraform

resource "aws_s3_bucket" "logistics-streamliner
/* ... */
-test1-s3" {
    bucket = "logistics-streamliner-test1-s3"
    acl    = "private"
}
Mobile

Mobile

mobile apps for android and ios - full native performance or cross-platform compatibility

Chevron Left Chevron Right

Dart

import 'package:flutter/material.dart';

void main() {
    runApp(
        LogisticsStreamlinerMobileApp()
    );
}
Web3

Web3

decentralized applications, custom smart contracts, nfts, web3 integrations - solutions on every blockchain

Chevron Left Chevron Right

Solidity

contract LogisticsStreamliner {
    address constant OWNER = "0xd711ce...";
    modifier isOwner() {
        require(msg.sender == OWNER, "Not owner");
        _;
    }
}
AI & ML, Automation, Bots

AI & ML, Automation, Bots

ai & machine learning models, workflows, scenarios, bots, scrapers, data processing, integrations, automations

Chevron Left Chevron Right

Python

from trl import SFTTrainer
from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("base-model")
trainer = SFTTrainer(model=model, train_dataset=dataset)
trainer.train()